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contributed to strengthen the links between geometry and physics.The be-
ginning is Atiyah work, principally index theorem : a smooth form of
Riemann-Roch and the applications on physics. With Segal he give axiom
of topological quantum field theory.

Supersymmetry
TQFT find a concrete realisation in the supersymmetric world which adapt
the Noether symmetry by adding supersymmetric variables.

BRST, cohomology
That helped extend the BRST formalism for supersymmetric topological
field theories . Calculations of correlation functions in which the points are
replaced by cohomology classes, lead to define spaces of instantons : mo-
duli whose dimension calculated by the index theorem lead to enumerative
geometry.
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Instanton, moduli
From 1985, Donalson, Gromov and Witten have understood the importance
of the concept of instantons defined in various moduli spaces, and permitted
a better understanding of the geometry.

Donaldson, Seiberg and Witten
Between 1983 and 1995, the geometry of dimension 4 has much progressed :
Donaldson uses the theories of Yang-Mills, Witten, adapting Donaldson
work in his supersymmetric background, the study with Seiberg, of super-
conductivity leading to more calculable invariants.

Gromov and Witten
From 1985, Gromov have understood the importance of the concept of
"curves" in symplectic geometry that products new instantons "holomor-
phics curves" point of departure of topological string theorie and mirror
symmetry.
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QFT
A quantum field theory can be seen in through a classical action was quan-
tified from the path integral. We can then define the correlation func-
tions dependent on observable functions on selected points on the source
space.These functions depend, for example, the metric that is chosen on the
target space.

Forget extra-structures
The Polyakov action in string theory is much better than that of Nambu goto
because it is possible to produce an action, independent of the geometry
of space-time , as well the topological Yang-Mills action is independent of
the metric.

TQFT
It appears natural to define a field theory "topological" free of sophistica-
ted structures like differentiability, metric. In such a theory of correlation
functions depend only on topological objects such as class (co)-homology
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Atiyah
The axiomatic given by Atiyah is based on CFT in two dimension given by
Segal. the idea : each Riemann surfaces can be divided like "Lego game".
The most famous piece is the pair of pants.

Cobordism
A TQFT of dimension n+1 associated to each n dimensional manifold X an
vector space V (X ). A cobordism is data (M,X ,Y ), with ∂M = (−X )t(Y )
and dimM = n + 1.

Rules
TQFT must satisfy some axiom : Naturality, fonctoriality, normalization,
multiplicativity, symmetry .
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Witten approach
Witten approach is based in three words the path integral, and correlation
functions supersymmetry and localisation.

Correlation functions
A correlation functions in TQFT is given by
〈Oµ1 ,Oµ2 , ...,Oµn〉 =

∫
[Dφi ]Oµ1(φi ),Oµ2(φi ), ...,Oµn (φi )exp(−S(φ))

Topological means : δ
δgµν 〈Oµ1 ,Oµ2 , ...,Oµn〉 = 0

Symmetry
there is a symmetry operator Q that checks : δS = −iε{Q, S} = 0.

Localization
The integral is localized on the space of instantons (zero-modes) and is
zero for other configurations.



Localization in zero-dimensional supersymmetry

A "Toy" model is given by taking map from space Σ = {P} to target
M = R, the real line. In this context, a field is simply the variable x ,
the path integral is just Z =

∫
M e−S(x)dx

A supersymmetric action is given by :
S(x , ψ1, ψ2) = h′(x)2

2 − h”(x)ψ1ψ2.
hence the partition function :
Z =

∫
e
−h′(x)2

2 +h”(x)ψ1,ψ2dxdψ1dψ2
by developing in power series fermionic part, we get :

Z =
∫

e
−h′(x)2

2 (1 + h”(x)ψ1ψ2)dxdψ1dψ2, but
∫

dψ = 0, hence the
first integral is zero, then :

Z =
∫

M h”(x)e
−h′(x)2

2 dx
∫
ψ1dψ1

∫
ψ2dψ2,

and as
∫
ψdψ = 1 (fermionic integration) we get :

Z =
∫

M h”(x)e
−h′(x)2

2 dx
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Supersymmetric transformations
For the example above, we can define supersymmetric transformations
that respect this action.
δx = ε1ψ1 + ε2ψ2
δψ1 = h′(x)ε2
δψ2 = −h′(x)ε1

We show that δS = 0, the fermionic variables are invariant for
supersymmetric transformation iff h′(x) = 0.
If h′(x) 6= 0, the change of variables (x , ψ1, ψ2)→ (x − ψ1ψ2

h′(x) , ψ1, ψ2)
shows that the partition function is zero outside the critical
points.
By expanding to second order near the critical point xc
(h(x) = h(xc) + h”(xc )

2 (x − xc)2) :

Z =
∫

M h”(x)e
−h′(x)2

2 dx
Z =

∑
h′(xc )=0 h”(xc)

∫
M exp(− (h”(xc )(x−xc ))2

2 )dx ,
with change of variables y = |h”(xc)|(x − xc)

Z =
∑

h′(xc )=0
√
π h”(xc )
|h”(xc )|
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Supersymmetric quantum mechanic

Now we study a supersymmetric field theory in one dimension. This
is the model of supersymmetric quantum mechanics which has
allowed Witten to give a new proof of the index theorem. We
considère the lagrangian :
L = ẋ2

2 −
h′(x)2

2 + i(ψ̄ψ̇ − ˙̄ψψ)− h”(x)ψ̄ψ .
ψ = ψ1 + iψ2
ψ̄ = ψ1 − iψ2

let π = ∂L
∂ψ̇

= iψ̄, p = ∂L
∂ẋ = ẋ the conjugate moments

Let supersymmetric relations
δεx = εψ̄ − ε̄ψ
δεψ = ε(i ẋ + h′(x)) ε = ε1 + iε2
δεψ̄ = ε̄(−i ẋ + h′(x))

We can show :
δεS =

∫
δLdt =

∫ d
dt Ldt = 0
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Localization of supersymmetric quantum mechanic

The two operators of supersymmetry, are associated supercharge Q,
Q̄ with Q2 = Q̄2 = 0 and we deduce an elliptic complex :
HF

Q,Q̄−→ HB
Q,Q̄−→ HF

Q,Q̄−→ ....

In hamiltonian formalism, {Q, Q̄} = 2H
SQM compactified on S1 give :
Tr(−1)F e−βH = dimHB

(0) − dimHF
(0) with F fermion number.

The supertrace giving the index, expressed by :
Tr(−1)F e−βH =

∫
periodicBd DXDψDψe−S

∂
∂βTr(−1)F e−βH = −

∫
periodicBd DXDψDψHe−S=0

Limite : From 1-dim TQFT to 0-dim TQFT
The fundamental result is that only time-independent contribute : that
reduce calculation to 0-dim TFT :
Z = Tr(−1)F e−βH =

∑
h′(xc )=0

√
π h”(xc )
|h”(xc )|
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III) TQFT and Lower dimensional geometry

Lower dimensions
The geometry of one and two dimensions is well know. Henri Poincare inven-
ted algebraic topology, and the Betti numbers that generalizes the invariant
Euler. It can be shown that in dimension smaller than three, the category of
topological varieties is identical to that of differentiable manifolds. (1923
Kerékjarko for dimension 2, Moises, Bing (1950) for the dimension 3). Ho-
wever this result is false in dimension four (in 1956 Milnor shows that there
are 27 structures on the differentiable sphere S7.
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Euler. It can be shown that in dimension smaller than three, the category of
topological varieties is identical to that of differentiable manifolds. (1923
Kerékjarko for dimension 2, Moises, Bing (1950) for the dimension 3). Ho-
wever this result is false in dimension four (in 1956 Milnor shows that there
are 27 structures on the differentiable sphere S7.

Two dimensions
In two dimensions, the classification of surfaces topological (so differen-
tiable), is made by the Betti numbers, and the orientability allows for
example to distinguish between torus and Klein bottle. In particular, it can
easily demonstrate the Poincare conjecture in dimension 2 : any simply
connected compact surface (π1(S) = 0) is homeomorphic to the sphere and
as H1 is abelianised of π1, the first Betti number is zero and the surface
does not contain holes.



III)Four dimensional geometry

Topological four manifolds
In four dimension, let X a compact a variety simply connected,we have
H1(X ) = 0, so by Poincare duality, we also H3(X ) = 0, only H2(X ) may
be nonzero. One can intuit that two non-trivial cycles (areas), Σ1,Σ2
in general position in X contribute to the homology and thus provide
topological information about it. is exactly what showed Freedman in 1982
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Intersection form
Four dimensionnal manifolds X , are classified by the intersection quadratic
form H2(X ,Z)× H2(X ,Z)→ Z.
If we denoted it , IX we have for example :

Example

1 IS4 = 0 : there is not non trivial cycles in the four sphere (H2(S4,Z) = 0).

2 IS2×S2, =

(
0 1
1 0

)
: H2(S2 × S2,Z)= Z⊕ Z : There is two cycles in

general position A = S2 × pt, B = pt × S2 et 〈A,B〉 = 〈A,B〉 = 1,
〈A,A〉 = 〈B,B〉 = 0.

3 IM]N =

(
IM 0
0 IN

)
:H2(M]N,Z) = H2(M,Z)⊕ H2(M,Z), (M]N is

connect sum of two four dimensional manifolds.



III) Four dimensional geometry

Theorem : Freedman (1982)
A simply connected four manifold X with even intersection form, q belongs
to a unique homeomorphism class, while if qis odd, there are just two
non-homeomorphic X with q as their intersection form.
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Theorem : Freedman (1982)
A simply connected four manifold X with even intersection form, q belongs
to a unique homeomorphism class, while if qis odd, there are just two
non-homeomorphic X with q as their intersection form.

Application : Poincaré theorem
Take X = S4 and S4

h an homotopic deformation of X , intersection form of
X is zero so even. S4

h has the same cohomology class than X by the previous
theorem, so the same intersection class that prove Poincaré theorem.

Theorem : Donaldson (1983)
A simply connected smooth four manifold, with positive definite intersec-
tion form is always diagonalisable with the property : each eigenvalues
equal to one.



Yang-Mills : Donaldson theory

There is two important numbers in four-manifolds X : the Pontriagin
and the Euler character :
p(X ) = 3σ(X ) e(X ) = χ(X )

Form in four-manifold split into Self dual : SD, and anti self
dual :ASD a connection is ASD if F +

A = 0
The main result his that ASD connection minimize Yang Mills
action :
SYM = 1

2
∫

X F ∧ ∗F .
We can write :
SYM = 1

2
∫

X |F
+
A |2dµ+ 8π2k

In the last expression, k is a topological invariant :
Chern-Weil theory give k = − 1

8π2
∫

X tr(F 2
A)

Donaldson define the moduli space of ASD connections as follows :
MASD = {[A] ∈ A/G/F +

A = 0} usually in this theory G = SU(2)
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Local model for MASD

It is important to have a local model of the moduli space of
connection we must linearize near ASD connection : define tangent
space T[A]MASD. That give the (virtual) dimension of moduli
space :

There his elliptic complex let P a principal SU(2)-bundle on X named
The instanton deformation complex :
0→ Ω0(X , adP)

∇A−→ Ω1(X , adP)
P+∇A−→ Ω2

+(X , adP)→ 0
We have :H1

A = T[A]MASD = Kerp+∇A
Im∇A

The index of this complex is the dimension ofMASD :
dimMASD = dimH0

A − dimH1
A + dimH2

A
finaly dimension of moduli space is given by :
dimMASD = −2p1(V )− 3

2(χ+ σ)
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Donaldson invariants
Let A∗ irreductible connections, gE = adP, B∗ = A∗/G
We define a new space B∗ × X , where we can compute invariants :

A∗ ×Ĝ gE

π

��

A∗ × gE //

π

��

gE

π

��
B∗ × X A∗ × X // X

Donaldson map
We can define cohomology class in H4(B∗ × X ) we transform homology
class on X in cohomology class on moduli space :
µ : Hi (X )→ H4−i (B∗)

Transformation from Donaldson map
We have :
x ∈ H0(X ) → O(x) ∈ H4(MASD)
δ ∈ H1(X ) → I1(δ) ∈ H3(MASD)
S ∈ H2(X ) → I2(S) ∈ H2(MASD)
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Witten Donaldson invariants
If the departure in the supersymmetric formalisme "a la Witten" is the
"topological" observable : O = Tr(φ2), we have descent equations :

Observables by descents
O(1) = tr( 1√

2φψµ)dxµ

O(2) = −1
2 tr( 1√

2φFµν − 1
4ψµψν)dxµ ∧ dxν

O(3) = −1
8 tr(ψλFµν)dxλ ∧ dxµ ∧ dxν

O(4) = 1
32 tr(FλτFµν)dxλ ∧ dx τ ∧ dxµ ∧ dxν

We can show that these observable are compatible with Donaldson
map result :

From Witten to Donaldson
We have :
I1(δ) =

∫
δ∈H1(X)O(1)

I2(S) =
∫

S∈H2(X)O(2)
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IV) Ten dimension : String theory
TQFT
The same formalism developped by Witten in three, and four dimension hold
in ten dimensional meaning. You need to choose adapted sigma-model, for
example the first twist give "A"-model with : lagrangian :

L, the supersymmetric lagrangian of a super-string is given by :
L = 2t

∫
Σ(1

2gIJ∂zφ
I∂zφ

J)d2z + 2t
∫

Σ(iψi
zDzχ

igi i + iψi
zDzχ

igi i −
Ri i jjψ

i
zψ

i
zχ

jχj)d2z

Supersymmetric transformation preserving action
δx I = ηχI δχI = 0
δψi

z = η∂zφi δψi
z = η∂zφi

If δψi
z = δψi

z = 0, we recognize the conditions of Cauchy-Riemann ! : The
instantons of this model are curves "minimum energy" according to Gromov :
holomorphic curves
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(Virtual) dimension of space of holomorphic curves

From the two previous formula (R.R. R.R. for curve and parametric
curve, we can deduce the virtual dimension the moduli space of
holomorphic curves. For this we can reason using the exact sequences

Consider the long exact sequence in cohomology associated to the
exact sequence : 0→ TΣ → f ∗TX → NΣ/X → 0
For details see [Pandharipande]

Dimension ofMg (X )

By combining the two previous forms of the Riemann-Roch formula :
dimvirtMg ,n(X , β) = (dimX )(1− g) +

∫
f∗(Σ) c1(TX ) + 3g − 3 + n

We could find directly this result in symplectic case (manifolds that
are treated are Kähler, hence symplectic) relying on the index of a
Fredholm operator for an elliptic complex adhoc.
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Gromov-Witten invariant
The notation [.] denote the fundamental class in Hk(Mg ,n(X , β),Q) :
We can now properly define the Gromov-Witten invariants.
Indeed, if [ω1], ..., [ωn] are cohomology class in H∗DR(X ) such that
Σn

i=1deg [ωi ] = k "integration on moduli space " will then be a
non-zero number, So we can expect count something.

Definition : Gromov-Witten invariants
Is called Gromov-Witten invariant the quantity :

< [ω1], ...[ωn] >β=
∫

[Mg,n(X ,β)] ev∗([ω1]) ∧ ... ∧ ev∗([ωn])

In this script we used an evaluation map :

evi :Mg ,n(X , β)→ X : (Σ, x1, ..., xn, ϕ) 7→ ϕ(xi )
ev∗i : H∗(X )→ H∗(Mg ,n(X , β)) : [ωi ] 7→ ev∗i ([ωi ])

This is completely analogous to how to obtain the invariants of
Donaldson.
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V) Conclusion

Set of rules for TQFT
In the topological theory proposed by Witten we can identify the next steps :

I Define a supersymmetric sigma model, Lagrangian and a supercharge for
every symmetry.

I Extract a moduli space of instantonn for the supersymmetric path integral
associate.

I Clean this space (compactification. ...), and determine a local model by
linearization. Deduce an expected dimension.

I Compute invariants obtained as integrals over the moduli space.
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V) conclusion
Set of rules for TQFT
In the topological theory proposed by Witten we can identify the next steps :

Define a supersymmetric sigma model, Lagrangian and a supercharge for
every symmetry.

Extract a moduli space of instantonn for the supersymmetric path integral
associate.

Clean this space (compactification. ...), and determine a local model by
linearization. Deduce an expected dimension.

Compute invariants obtained as integrals over the moduli space.

Geometric engineering ?
One might think that for a long time, this machinery will be modeled as
accurately as possible the world of elementary particles, and can adapt to
new results that emerge from fundamental physics.
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